Online Principal Components Analysis
نویسندگان
چکیده
We consider the online version of the well known Principal Component Analysis (PCA) problem. In standard PCA, the input to the problem is a set of ddimensional vectors X = [x1, . . . ,xn] and a target dimension k < d; the output is a set of k-dimensional vectors Y = [y1, . . . ,yn] that minimize the reconstruction error: minΦ ∑ i ‖xi − Φyi‖2. Here, Φ ∈ Rd×k is restricted to being isometric. The global minimum of this quantity, OPTk, is obtainable by offline PCA. In online PCA (OPCA) the setting is identical except for two differences: i) the vectors xt are presented to the algorithm one by one and for every presented xt the algorithm must output a vector yt before receiving xt+1; ii) the output vectors yt are ` dimensional with ` ≥ k to compensate for the handicap of operating online. To the best of our knowledge, this paper is the first to consider this setting of OPCA. Our algorithm produces yt ∈ R with ` = O(k · poly(1/ε)) such that ALG ≤ OPTk +ε‖X‖F.
منابع مشابه
Online Algorithm for Robust Kernel PCA
We introduce a technique to improve the online kernel PCA (KPCA) robust to outliers due to undesirable artifacts such as noises, alignment errors, or occlusion. The proposed online robust KPCA (rKPCA) links the online updating and robust estimation of principal directions. It inherits good properties from these two ideas for reducing the time complexity, space complexity, and the influence of t...
متن کاملA new weighting approach to Non-Parametric composite indices compared with principal components analysis
Introduction of Human Development Index (HDI) by UNDP in early 1990 followed a surge in use of non-parametric and parametric indices for measurement and comparison of countries performance in development, globalization, competition, well-being and etc. The HDI is a composite index of three indicators. Its components are to reflect three major dimensions of human development: longevity, knowledg...
متن کاملPersian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کاملOnline Composition Prediction of a Debutanizer Column Using Artificial Neural Network
The current method for composition measurement of an industrial distillation column includes an offline method, which is slow, tedious and could lead to inaccurate results. Among advantages of using online composition designed are to overcome the long time delay introduced by laboratory sampling and provide better estimation, which is suitable for online monitoring purposes. This paper pres...
متن کاملEvaluation and Geographical analysis of the principal components affecting urban economic sustainability, Case study: Cities of Chaharmahal and Bakhtiari Province
Abstract Aims & Backgrounds: Today, economic challenges are one of the most important obstacles to achieving sustainability in the cities of developing countries. Therefore, recognition and geographical analysis of the factors affecting the economic sustainability of cities are among the important goals and priorities of urban and regional planning. Methodology: This research has been done by q...
متن کاملIncorporating Prior Information in Compressive Online Robust Principal Component Analysis
We consider an online version of the robust Principle Component Analysis (PCA), which arises naturally in timevarying source separations such as video foreground-background separation. This paper proposes a compressive online robust PCA with prior information for recursively separating a sequences of frames into sparse and low-rank components from a small set of measurements. In contrast to con...
متن کامل